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Outline

Kolmogorov-Nagumo mean

 -path in a function space

Generalized mean and variance

U-divergence geometry

Minimum U-divergence and density estimation

Short review for Information geometry

 –divergence geometry
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A short review of  IG

Nonparametric space

Space of statistics

Information geometry is discussed on the product space
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Bartlett’s identity

Parametric model

Bartlett’s  first identity 

Bartlett’s  second  identity 
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Metric and connections

Information metric

Mixture connection

Exponential connection

Rao (1945), Dawid (1975), Amari (1982)
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Geodesic curves and surfaces in IG

e-geodesic curve

m-geodesic curve

e-geodesic surface

m-geodesic surface
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Kullback-Leibler

K-L divergence

1. KL divergence is the expected log-likelihood ratio 

3. KL divergence induces to the m-connection and e-connection  

Eguchi (1983)

2. Maximum likelihood is minimum KL divergence. Akaike (1974)



Thm
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Pythagoras

Pf

Amari-Nagaoka (2001)
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Exponential model

Exponential model

Mean parameter

For 

For 

Amari (1982)

Degenerated Bartlett identity
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Minimum KL leaf

Mean equal space

Exponential model
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Pythagoras foliation



12

log + exp

Bartlett  identities

e-connection
m-connection

KL-divergence

log & exp

Pythagoras identity

exponential model

mean equal space

e-geodesic
m-geodesic

Pythagoras foliation
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Path geometry

{ m-geodesic, e-geodesic , … }
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Kolmogorov-Nagumo mean

K-N mean is                                       for positive numbers

￥
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K-N mean in Y

K-N mean

Cf. Naudts (2009)

Def .



 -path 

 -path connecting  f and  g Def.

Thm

(Pf )
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Examples of  -path

Exm 1

Exm 3

Exm 2

Exm 0
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Identities of -density

Model 

1st identity 

2nd identity 

because 



Generalized mean and variance 

Def

Note
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Generalized mean and variance 

Exm



21

Bartlett Identity

Model 

Bartlett  identity 

Bartlett  identities 
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Tangent space of Y 

Topological properties of Tf
depend on 

If  = log, then Tf
is  too large to do statistics on Y  

Cf. Pistone (1992)

Tangent space 

Expectation gives the tangent space

Riemannian metric
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Parallel transport

A vector field                               is parallel along a curve 

Def   

Cf. Amari (1982).

A curve                           is -geodesic
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-geodesic

Proof.

Thm If                       is the -geodesic curve
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-divergence

-divergence

-entropy

-cross entropy

Note:  -divergence is KL-divergence if = log
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Divergence geometry

Let           be a statistical model.

with the Riemannian metric on M : 

the pair of affine connections on M:

Def.
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-divergence geometry

The metric

Affine connection pair
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–Pythagorean theorem

f

g

h

-geodesicThm

Pf

-geodesic
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-Pythagorean foliation

-mean equal space
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-mean

What is a statistical meaning of -mean and -variance?

-Bartlett  identities

- connection
- connection

- divergence

- Pythagoras identity

- model

- mean equal space

- geodesic
- geodesic

- Pythagoras foliation
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U-divergence

U-cross-entropy

U-entropy

U-divergence

Note

Exm
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U-divergence geometry

The metric associated with U-divergence: 

Affine connections associated with U-divergence: 

Thm (i)  U-geodesic is  mixture geodesic.

(ii) U*-geodesic is geodesic
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U-metric on a model  M

U-geometry = -geometry/

-metric on a model  M

-connection

U*-connection



Triangle with DU

f

g

h

mixture geodesic
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-geodesic

Thm

Pf



U-estimation

U-loss function

U-estimator for 

U-empirical loss function

Let g(x) be a data density function with statistical model
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U-estimator under -model

-model
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U-estimator for 

U-empirical loss function

U-estimator under -model has analogy with
MLE under exponential model



Potential function 
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Def We call 

the potential function on -model

Note  

Cf.   mean parameter

We define  the mean parameter  by

Thm U-estimator for is given by the sample mean 



Pythagoras foliation 
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Thm

Pf  



Pythagoras foliation

39



U-Boost learning for density estimation
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U-Boost algorithm
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Inner step in the convex hull 
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Then we have

Non-asymptotic bound 
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Theorem. Assume that a data distribution has a density g(x) and that 
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KDE
RSDE (Girolami-He, 2004)

-Boost 
-Boost 

C (skewed-unimodal) L (quadrimodal)  H (bimodal) 
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Conclusion 

K-N mean

E(), Cov() -geodesic

U-divergence 

-path

(G(U),*(U), (U))

-geodesic, m-geodesic )

))((co1* WW U-path

=

U

-divergence (G(),*(), ())

-geodesic, -geodesic )
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Future problems
Tangent space

Path space
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Future problems

What is a statistical meaning of -mean and -variance?

-mean, -variance, -divergence

These are natural ideas from IG view point

Can we define a random sample of -version?

We can build -efficiency in estimation theory,  but 



Thank you

48


